
CS103 Handout 39

Spring 2017 May 26, 2017

Extra Practice Problems 9

This handout contains a bunch of problems that we hope will serve as a good cumulative review for
all the material that we've covered this quarter. If there are any other topics you'd like some addi-
tional practice with, please let us know!

The latter problems in this set of practice problems touch on topics we haven’t covered yet as of the
time this set of problems is released (verifiers, non-RE languages, P and NP), so don’t panic if you
haven’t seen those concepts yet.

We'll release solutions on Wednesday.

Problem One: Set Theory
Prove or disprove: if A, B, C, and D are sets where A × B ⊆ C × D, then A ⊆ C and B ⊆ D.

Problem Two: Induction
In many applications in computer science, especially cryptography, it is important to compute expo-
nents efficiently. For example, the RSA public-key encryption system, widely used in secure com-
munication, relies on computing huge powers of large numbers. Fortunately, there is a fast algorithm
called repeated squaring for computing xy in the special case where y is a natural number.

The repeated squaring algorithm is based on the following function RS:

RS (x , y)={
1 if y=0

RS (x , y /2)
2 if y is even and y>0

x⋅RS (x ,(y−1)/2)
2 if y is odd and y>0

For example, we could compute 210 using RS(2, 10) as follows:

In order to compute RS(2, 10), we need to compute RS(2, 5)2.
In order to compute RS(2, 5), we need to compute 2·RS(2, 2)2.

In order to compute RS(2, 2), we need to compute RS(2, 1)2.
In order to compute RS(2, 1), we need to compute 2·RS(2, 0)2.

By definition, RS(2, 0) = 1
so RS(2, 1) = 2·RS(2, 0)2 = 2·12 = 2.

so RS(2, 2) = RS(2, 1)2 = 22 = 4.
so RS(2, 5) = 2·RS(2, 2)2 = 2·42 = 32.

so RS(2, 10) = RS(2, 5)2 = 322 = 1024.

The RS function is interesting because it can be computed much faster than simply multiplying x by
itself y times. Since RS is defined recursively in terms of RS with the y term roughly cut in half, RS
can be evaluated using approximately log₂ y multiplications. (You don't need to prove this).

Prove that for any x and any ∈ ℝ y , that ∈ ℕ RS(x, y) = xy. (Hint: use complete induction on y.)

2 / 4

Problem Three: Graphs
Recall from the second midterm exam that if G = (V, E) is an undirected graph, then a dominating
set in G is a set D where every node v ∈ V either belongs to D or is adjacent to a node in D (or
both).

Now, let's introduce some new terminology. A domatic partition of G is a way of splitting the
nodes in G into disjoint, nonempty sets V₁, V₂, …, Vₙ such that each set Vi is a dominating set. (Two
sets S and T are disjoint if S ∩ T = Ø.) The domatic number of G, denoted d(G), is the maximum
number of sets in any domatic partition of G.

i. Let G be an undirected graph and let δ be the minimum degree of any node in G. Prove that
d(G) ≤ δ + 1.

An isolated node in a graph G is a node that is not adjacent to any other nodes in G.

ii. Let G be an undirected graph with no isolated nodes. Prove that d(G) ≥ 2. (Hint: Use a re-
sult from the practice second midterm exam.)

iii. Prove that the bounds you came up with in parts (i) and (ii) are “tight” in the sense that, in
general, you cannot improve upon these upper bounds or lower bounds without more knowl-
edge of the structure of the graph. Specifically, give a graph G where d(G) = δ + 1 and give
a graph G with no isolated nodes where d(G) = 2. Briefly justify your answers.

Problem Four: First-Order Logic
Given the predicates

• String(w), which states that w is a string over alphabet Σ;
• TM(M), which states that M is a TM with input alphabet Σ; and
• Accepts(M, w), which states that M accepts w,

along with the function ⟨O⟩, which represents the encoding of some object O, write a statement in
first-order logic that says “LD ∉ RE.” (We’ll cover LD on Wednesday, May 31. Looking forward: the
language LD is defined as LD = { ⟨M⟩ | ⟨M⟩ ∉ ℒ(M) })

Problem Five: Binary Relations
Let A = {1, 2, 3}. Draw the Hasse diagram of the lift of < over A to ℘(A), which is the relation <
defined as

X<Y if Y ≠ Ø and for any x ∈ X and y ∈ Y, we have x < y.

Problem Six: Functions and Cardinality
Let A, B, C, and D be sets where |A| = |C|, |B| = |D|, A ∩ B = Ø, and C ∩ D = Ø. Using the formal
definition of equal cardinality, prove that |A ∪ B| = |C ∪ D|.

3 / 4

Problem Seven: The Pigeonhole Principle
Suppose that you have a set S of n > 0 natural numbers. Prove that there must be a nonempty subset
of S where the sum of the numbers in that subset is a multiple of n. (Hint: Number the elements of S
as x₁, x₂, …, x . Then, look at xₙ ₁, x₁ + x₂, x₁ + x₂ + x₃, etc.)

Problem Eight: DFAs and NFAs
Here's some true-or-false questions to ponder:

i. True or false: If D is a DFA over alphabet Σ and D has no accepting states, then ℒ(D) = Ø.

ii. True or false: If D is a DFA over alphabet Σ and D has no rejecting states, then ℒ(D) = Σ*.

iii. True or false: If N is an NFA over alphabet Σ and N has no accepting states, then ℒ(N) = Ø.

iv. True or false: If N is an NFA over alphabet Σ and N has no rejecting states, then ℒ(N) = Σ*.

Let Σ = {a, b, c, d, e} and let L be the following language:

L = { w ∈ Σ* | every character from Σ appears at least once in w }

Any DFA for L must have at least 32 states (you don't need to prove this.)

v. Prove that any DFA for L must have at least 32 states.

vi. Design a reasonably-sized NFA for L. This shows that even if you can't find a small NFA for
a language, you might be able to find a small NFA for its complement.

Problem Nine: Nonregular Languages
Let Σ = {a, b} and consider the language L = { wx | w ∈ Σ*, x ∈ Σ*, |w| = |x|, and w ≠ x }. Prove
that L is not a regular language.

Problem Ten: Context-Free Grammars
This question explores closure properties of CFLs.

i. Show that the context-free languages are closed under union, concatenation, and Kleene star.

ii. Although we didn't prove this, the context-free languages are not closed under complementa-
tion. In lecture, you saw a CFG for the language { w ∈ {a, b}* | w is a palindrome }, and on
Problem Set Seven you built a CFG for the complement of this language. Explain how this is
possible even though the context-free languages aren't closed under complementation.

Problem Eleven: Turing Machines
Design a TM over the alphabet Σ = {a, b} whose language is { w ∈ Σ* | w does not contain aa or bb
as substrings }.

4 / 4

Problem Twelve: R and RE Languages
(We will cover the material necessary to solve this problem on Wednesday, May 31st.)

Prove that there is a language X where X ⊆ LD, where X contains infinitely many strings, and where
X is an RE language.

Problem Thirteen: Impossible Problems
Let L = { ⟨M⟩ | M is a TM and ℒ(M) = { ⟨M⟩ }}. In other words, L is the set of all TMs that accept
themselves and only themselves. (We can think of them as narcissistic TMs.)

Prove that L ∉ R.

